PyDiffGame is a Python implementation of a Nash Equilibrium solution to Differential Games, based on a reduction of Game Hamilton-Bellman-Jacobi (GHJB) equations to Game Algebraic and Differential Riccati equations, associated with Multi-Objective Dynamical Control Systems

krichelj, updated 🕥 2023-03-17 16:47:04

Logo

pages-build-deployment CodeQL

What is this?

PyDiffGame is a Python implementation of a Nash Equilibrium solution to Differential Games, based on a reduction of Game Hamilton-Bellman-Jacobi (GHJB) equations to Game Algebraic and Differential Riccati equations, associated with Multi-Objective Dynamical Control Systems\ The method relies on the formulation given in:

  • The thesis work "Differential Games for Compositional Handling of Competing Control Tasks" (Research Gate)

  • The conference article "Composition of Dynamic Control Objectives Based on Differential Games" (IEEE | Research Gate)

If you use this work, please cite our paper: @conference{med_paper, author={Kricheli, Joshua Shay and Sadon, Aviran and Arogeti, Shai and Regev, Shimon and Weiss, Gera}, booktitle={29th Mediterranean Conference on Control and Automation (MED)}, title={{Composition of Dynamic Control Objectives Based on Differential Games}}, year={2021}, pages={298-304}, doi={10.1109/MED51440.2021.9480269}}

Installation

To install this package run this from the command prompt: pip install PyDiffGame

The package was tested for Python >= 3.10, along with the listed packages versions in requirments.txt

Input Parameters

The package defines an abstract class PyDiffGame.py. An object of this class represents an instance of differential game. The input parameters to instantiate a PyDiffGame object are:

  • A : np.array of shape $(n,n)$

    System dynamics matrix

  • B : np.array of shape( $n,\sum_{i=1}^N m_i$ ), optional

    Input matrix for all virtual control objectives

  • Bs : Sequence of np.array objects of len $(N)$, each array $B_i$ of shape $(n,m_i)$, optional

    Input matrices for each virtual control objective

  • Qs : Sequence of np.array objects of len $(N)$, each array $Q_i$ of shape $(n,n)$, optional

    State weight matrices for each virtual control objective

  • Rs : Sequence of np.array objects of len $(N)$, each array $R_i$ of shape $(m_i,m_i)$, optional

    Input weight matrices for each virtual control objective

  • Ms : Sequence of np.array objects of len $(N)$, each array $M_i$ of shape $(m_i,m)$, optional

    Decomposition matrices for each virtual control objective

  • objectives : Sequence of Objective objects of len $(N)$, each $O_i$ specifying $Q_i, R_i$ and $M_i$, optional

    Desired objectives for the game

  • x_0 : np.array of len $(n)$, optional

    Initial state vector

  • x_T : np.array of len $(n)$, optional

    Final state vector, in case of signal tracking

  • T_f : positive float, optional

    System dynamics horizon. Should be given in the case of finite horizon

  • P_f : list of np.array objects of len $(N)$, each array $P_{f_i}$ of shape $(n,n)$, optional, default = uncoupled solution of scipy's solve_are

    Final condition for the Riccati equation array. Should be given in the case of finite horizon

  • state_variables_names : Sequence of str objects of len $(N)$, optional

    The state variables' names to display when plotting

  • show_legend : boolean, optional

    Indicates whether to display a legend in the plots

  • state_variables_names : Sequence of str objects of len $(n)$, optional

    The state variables' names to display

  • epsilon_x : float in the interval $(0,1)$, optional

    Numerical convergence threshold for the state vector of the system

  • epsilon_P : float in the interval $(0,1)$, optional

    Numerical convergence threshold for the matrices P_i

  • L : positive int, optional

    Number of data points

  • eta : positive int, optional

    The number of last matrix norms to consider for convergence

  • debug : boolean, optional

    Indicates whether to display debug information

Tutorial

To demonstrate the use of the package, we provide a few running examples. Consider the following system of masses and springs:

The performance of the system under the use of the suggested method is compared with that of a Linear Quadratic Regulator (LQR). For that purpose, class named PyDiffGameLQRComparison is defined. A comparison of a system should subclass this class. As an example, for the masses and springs system, consider the following instantiation of an MassesWithSpringsComparison object:

```python import numpy as np from PyDiffGame.examples.MassesWithSpringsComparison import MassesWithSpringsComparison

N = 2 k = 10 m = 50 r = 1 epsilon_x = 10e-8 epsilon_P = 10e-8 q = [[500, 2000], [500, 250]]

x_0 = np.array([10 * i for i in range(1, N + 1)] + [0] * N) x_T = x_0 * 10 if N == 2 else np.array([(10 * i) ** 3 for i in range(1, N + 1)] + [0] * N) T_f = 25

masses_with_springs = MassesWithSpringsComparison(N=N, m=m, k=k, q=q, r=r, x_0=x_0, x_T=x_T, T_f=T_f, epsilon_x=epsilon_x, epsilon_P=epsilon_P) ```

Consider the constructor of the class MassesWithSpringsComparison:

```python import numpy as np from typing import Sequence, Optional

from PyDiffGame.PyDiffGame import PyDiffGame from PyDiffGame.PyDiffGameLQRComparison import PyDiffGameLQRComparison from PyDiffGame.Objective import GameObjective, LQRObjective

class MassesWithSpringsComparison(PyDiffGameLQRComparison): def init(self, N: int, m: float, k: float, q: float | Sequence[float] | Sequence[Sequence[float]], r: float, Ms: Optional[Sequence[np.array]] = None, x_0: Optional[np.array] = None, x_T: Optional[np.array] = None, T_f: Optional[float] = None, epsilon_x: Optional[float] = PyDiffGame.epsilon_x_default, epsilon_P: Optional[float] = PyDiffGame.epsilon_P_default, L: Optional[int] = PyDiffGame.L_default, eta: Optional[int] = PyDiffGame.eta_default): I_N = np.eye(N) Z_N = np.zeros((N, N))

    M_masses = m * I_N
    K = k * (2 * I_N - np.array([[int(abs(i - j) == 1) for j in range(N)] for i in range(N)]))
    M_masses_inv = np.linalg.inv(M_masses)

    M_inv_K = M_masses_inv @ K

    if Ms is None:
        eigenvectors = np.linalg.eig(M_inv_K)[1]
        Ms = [eigenvector.reshape(1, N) for eigenvector in eigenvectors]

    A = np.block([[Z_N, I_N],
                  [-M_inv_K, Z_N]])
    B = np.block([[Z_N],
                  [M_masses_inv]])

    Qs = [np.diag([0.0] * i + [q] + [0.0] * (N - 1) + [q] + [0.0] * (N - i - 1))
          if isinstance(q, (int, float)) else
          np.diag([0.0] * i + [q[i]] + [0.0] * (N - 1) + [q[i]] + [0.0] * (N - i - 1)) for i in range(N)]

    M = np.concatenate(Ms,
                       axis=0)

    assert np.all(np.abs(np.linalg.inv(M) - M.T) < 10e-12)

    Q_mat = np.kron(a=np.eye(2),
                    b=M)

    Qs = [Q_mat.T @ Q @ Q_mat for Q in Qs]

    Rs = [np.array([r])] * N
    R_lqr = 1 / 4 * r * I_N
    Q_lqr = q * np.eye(2 * N) if isinstance(q, (int, float)) else np.diag(2 * q)

    state_variables_names = ['x_{' + str(i) + '}' for i in range(1, N + 1)] + \
                            ['\\dot{x}_{' + str(i) + '}' for i in range(1, N + 1)]
    args = {'A': A,
            'B': B,
            'x_0': x_0,
            'x_T': x_T,
            'T_f': T_f,
            'state_variables_names': state_variables_names,
            'epsilon_x': epsilon_x,
            'epsilon_P': epsilon_P,
            'L': L,
            'eta': eta}

    lqr_objective = [LQRObjective(Q=Q_lqr,
                                  R_ii=R_lqr)]
    game_objectives = [GameObjective(Q=Q,
                                     R_ii=R,
                                     M_i=M_i) for Q, R, M_i in zip(Qs, Rs, Ms)]
    games_objectives = [lqr_objective,
                        game_objectives]

    super().__init__(args=args,
                     M=M,
                     games_objectives=games_objectives,
                     continuous=True)

```

Finally, consider calling the masses_with_springs object as follows:

```python output_variables_names = ['$\frac{x_1 + x_2}{\sqrt{2}}$', '$\frac{x_2 - x_1}{\sqrt{2}}$', '$\frac{\dot{x}_1 + \dot{x}_2}{\sqrt{2}}$', '$\frac{\dot{x}_2 - \dot{x}_1}{\sqrt{2}}$']

masses_with_springs(plot_state_spaces=True, plot_Mx=True, output_variables_names=output_variables_names, save_figure=True) ```

Refer This will result in the following plot that compares the two systems performance for a differential game vs an LQR:

And when tweaking the weights by setting

python qs = [[500, 5000]]

we have:

Acknowledgments

This research was supported in part by the Helmsley Charitable Trust through the Agricultural, Biological and Cognitive Robotics Initiative and by the Marcus Endowment Fund both at Ben-Gurion University of the Negev, Israel. This research was also supported by The Israeli Smart Transportation Research Center (ISTRC) by The Technion and Bar-Ilan Universities, Israel.

               

Releases

v0.1.1 2023-02-28 10:48:23

Uploaded as a package to PyPI

v0.1.0 2023-02-17 11:07:48

Initial release

Joshua Shay Kricheli

AI/ML Researcher, Vice President Data Science, M.Sc. in Computer Science, B.Sc. in Mechanical Engineering

GitHub Repository Homepage

control-theory riccati-equation differential-game quadrotor multi-objective-optimization matrix-equations differential-equations game-theory bellman-equation hamiltonian pontryagin-maximum-principle hamilton-jacobi-bellman dynamical-systems nash-equilibrium artificial-intelligence-algorithms numerical-methods inverted-pendulum optimization-algorithms object-oriented-programming computer-science