一是平时看的一些自己认为不错的文章总是很难整理,所以打算开一个项目管理这些,也可以分享给大家;二是记录自己平时所学的一些笔记,一些经历,以供将来翻阅;三是想系统地进阶学习一番,记录这个项目也是想激励自己;四是分享一些平时看的电子书啊、视频等等
没办法,要深入学习必须要看源码。身为小菜鸟的我,每逢看源码时就找不到个准头,看着看着就迷糊了。恰巧今天逛知识星球时,看一个球友的回答觉得非常好,特此转录一下
如何写好注释
注释也很重要啊,菜的抠脚的我,每次都是写完代码后再补充注释,哈哈哈。。。
原文链接:https://paulmillr.com/posts/simple-description-of-popular-software-licenses/
GitHub如何快速给README.md添加目录
ghtoc Github地址(pyhon) 见toc.py,(python2.7,使用方法·:python toc.py MDFile
,会生成一个.bak备份文件)【推荐这个可以用,也不用装其他工具】
待续
附一份linux学习课程的课件:PDF
vi/vim使用 【了解些简单使用即可,现在不都是用编辑器的多嘛】
上面有很多小玩意挺有意思的
分享两个学习Linux命令的
cheat.sh,不仅仅是linux命令,还包括一些语言像java、scala脚本的使用
爬虫这一块我也没多少可以说的,距离我上次写爬虫程序都有一年多了。谈谈感想吧,别听什么培训机构诳你什么爬虫工程师有前途啥的,当然学好学精爬虫也能拿到高薪,但这一行也有不少人了,精通的自然不用说。而且现在有很多像八爪鱼、火车头这些可以定制的爬虫软件,还有一些自学习的爬虫框架。所以我觉得爬虫这一块只要稍微学下,了解下即可
我建议如果是python的话,了解urllib(http请求),requests(http请求),lxml(文本解析),Scrapy(爬虫框架),多线程爬虫就可以了
原来也在csdn上写过一些scrapy的文章,当然学习一门语言官方文档才是最重要的(scrapy也有中文的)
之前写过的这篇文章,见:Python数据分析学习文章归纳
数据分析如何入门学习How do I learn data analysis with Python?
虽然是英文的,不过看一遍很大收获(可以用百度翻译看一下)
Numpy使用
- 快速入门Numpy
- Stack Overflow Numpy问题汇集
- 书籍推荐NumPy Cookbook -第二版 by Ivan Idris(用中文版)
- 8.3 更新,自己的笔记,凑合看下吧,有些我觉得没太重要的就没记上去(也包括Matplotlib的那一部分)
- 待续
Pandas使用
- 入门级神作,没错就是10 Minutes to pandas
进阶级神作,没错就是Stack Overflow Pandas问题汇集——>强烈推荐
Pandas is a Python library for Panel Data manipulation and analysis, e.g. multidimensional time series and cross-sectional data sets commonly found in statistics, experimental science results, econometrics, or finance. IMPORTANT: When asking a question with this tag, please tag your questions: [python]; [pandas]; [dataframe]/[series]; (optional) [groupby]/[merge]/etc., depending on your specific requirements.
Pandas神书Pandas Cookbook
Pandas数据结构之Series:
- 【pandas】[1] Series 入门(创建和增删改查)
- Pandas中兼并数组和字典功能的Series
Series也就是Numpy的一维数组,很多方法是通用的。以上两篇足以掌握。
关键是DateFrame使用
- pandas分块处理大文件
- drop函数使用————>强烈推荐
- Pandas GroupBy对象——>强力推荐,系统的讲了groupby对象创建及一系列函数使用
- Pandas合并与重塑
- PANDAS 数据合并与重塑(concat篇)
- PANDAS 数据合并与重塑(join/merge篇)
- isin()函数用于构建布尔对象,便于删选dateframe的行, pandas中isin()函数及其逆函数使用
- 建议用loc和iloc选择行
- loc以行索引和列索引key来选择元素
- iloc以行列所在的整数索引来选择元素,不过都从0开始
- 待续
matplotlib使用(建议还是学下seaborn)
- 自己的笔记,凑合看下吧,有些我觉得没太重要的就没记上去(也包括Matplotlib的那一部分)
- 推荐B站上的一个up主的视频,莫烦·Matplotlib中文视频教程——基于python3,看完差不多就OK了
Scipy
因为还不怎么用,所以以后再说吧。。。 - Scipy Doc
杂文汇集
心得:多动手,别只看
还有阿里天池大赛,但参加了几次,自我感觉还是段位不够啊,太难了
赛事代码学习资源
其实,不管是大数据还是其他知识的学习,我认为最好的方法无非是先找个视频快速过一遍,总体上了解这门技术干嘛的,是否适合自己。然后结合官网文档细致地过一遍,学习过程中最好结合前人大牛的博客,都是经验之得你说要不要看。最后就是项目了,实际就是在工作中应用,这个我也说不好,每个人都有自己的方法吧。当然,深入看源码是躲不过的,分享一个如何阅读Flink源码的回答,我自以为是有很大的帮助的
以下出自我在csdn上的一些文章,https://blog.csdn.net/lzw2016/
Apache Hadoop: 是Apache开源组织的一个分布式计算开源框架,提供了一个分布式文件系统子项目(HDFS)和支持MapReduce分布式计算的软件架构
转载自 Matt's Blog 原作者:王蒙
掌握MapReduce编程
仅供参考:
推荐几个博客分类博主LanceToBigData:Hadoop ,小小默’s Blog,分类很乱但是内容确实不错
Apache Hive: 是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析
Apache Pig: 是一个基于Hadoop的大规模数据分析工具,它提供的SQL-LIKE语言叫Pig Latin,该语言的编译器会把类SQL的数据分析请求转换为一系列经过优化处理的MapReduce运算 【不准备学,计划Hive代替Pig】
Apache HBase: 是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群
Apache Sqoop: 是一个用来将Hadoop和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中
Apache Mahout:是基于Hadoop的机器学习和数据挖掘的一个分布式框架。【不打算学,计划利用SparkMLLib代替】
Apache Zookeeper: 是一个为分布式应用所设计的分布的、开源的协调服务,它主要是用来解决分布式应用中经常遇到的一些数据管理问题,简化分布式应用协调及其管理的难度,提供高性能的分布式服务
Apache Flume: 是一个分布的、可靠的、高可用的海量日志聚合的系统,可用于日志数据收集,日志数据处理,日志数据传输
等等,当然不可能全学的
视频资源见下方
如何自动调整Shuffle Partition个数,BroadcastJoin使用,Join过程数据倾斜的skewedJoin设置
视频和书籍资源见下方
阿里强推的flink,取而代之二次开发的流计算和批处理引擎blink,spark的强势竞争对手
链接:https://github.com/josonle/Realtime-Data-Warehouse
涉及离线数仓和实时数仓两部分,涉及大数据组件包括Sqoop、Kafka、Flume、Spark Streaming、Hive、Spark SQL、Kudu、Impala
Kafka+Flume+HDFS 构建消息采集系统
实时消息处理流程
算法课程Coursera网上主推的是Robert Sedgewick的算法课【红宝书的作者,普林斯顿计算机系创始人】
还有一门是Coursera上的斯坦福大学的算法课,我感觉偏理论,难度不如上面的那门
推荐一门面试课,我感觉还是可以的,极客时间的【数据结构与算法之美】
在线刷题:LeetCode练手
LeetCode现在有中文版的了,力扣中国
每周基于Java、C++的LeetCode刷题记录
代码驱动:【待补充】
GitHub项目推荐
秋招已经结束有一段时间了,闲来无事,想着学点新的东西。刚好在B站上看到一个SSM到Spring boot的教程,所以打算学习一下Java Web相关的内容。
数据库主要面向MySQL。pdf中附有转载自相关博客的引用链接,脑图是自己总结的,参考《深入浅出mysql》及相关博客。
博文 【相关PDF收录于此】
数据库两大神器【索引和锁】.pdf
20个数据库常见面试题讲解 - 搜云库技术团队.pdf
『浅入深出』MySQL 中事务的实现.pdf————【讲的确实不错】
分布式一致性原理,涉及CAP理论,2PC、3PC、Paxos、Raft、ZAB协议
理解分布式事务 -贝聊科技.pdf
分布式锁实现(基于redis-mysql).pdf > 分布式锁可基于数据库、zookeeper、缓存(像redis、tair)实现 > http://www.hollischuang.com/archives/1716
推荐博客
何登成的技术博客————MySQL相关的大佬
《Python最佳实践指南!》
为什么推荐这份实践指南?这份指南与官方文档有什么不同吗?这份指南包含了作者非常强烈地主观感受,不单单是Python的安装、配置或者每个框架的使用,作者通过个人实践,对自己比较看好的框架标注了强烈推荐,对一些需要注意的地方也进行了标注,基本相当于作者的实践心得,阅读过程中会感受到与作者的思想碰撞。
(Github开源地址:http://pythonguidecn.readthedocs.io/zh/latest/)
《国内一线互联网公司内部面试题库》
该开源项目在Github上已有6000多Star,主要是来自国内一线互联网公司的面试题集锦,涉及Java和Android两大方向,涉及的公司有百度、小米、美团、58、猎豹、360、新浪、搜狐等。据说,掌握这些知识点可以大大增加前两轮技术面试的通过概率。
(Github开源地址:https://github.com/JackyAndroid/AndroidInterview-Q-A/blob/master/README-CN.md)
《Java学习+面试指南》 https://github.com/Snailclimb/JavaGuide 【Java学习+面试指南】 一份涵盖大部分Java程序员所需要掌握的核心知识。
推荐使用 https://snailclimb.top/JavaGuide/ 在线阅读(访问速度慢的话,请使用 https://snailclimb.gitee.io/javaguide ),在线阅读内容本仓库同步一致。这种方式阅读的优势在于:有侧边栏阅读体验更好,Gitee pages 的访问速度相对来说也比较快。
我面试时看的就是这个,自己也归纳了面试过程中遇到的笔试、面试题和看到的文章
(Github开源地址:https://github.com/Snailclimb/JavaGuide)
[email protected]:Snailclimb/JavaGuide.git
《技术面试必备基础知识》 https://cyc2018.github.io/CS-Notes
本项目包含了技术面试必备的基础知识,浅显易懂,你不需要花很长的时间去阅读和理解成堆的技术书籍就可以快速掌握这些知识,从而节省宝贵的面试复习时间。你也可以订阅 [面试进阶专栏],包含了学习指导和面试技巧,让你更轻松拿到满意的 Offer。
(Github开源地址:https://github.com/CyC2018/CS-Notes )
[email protected]:CyC2018/CS-Notes.git
《神经网络与深度学习》相关代码 Python 实现
该开源项目是对《神经网络与深度学习》一书中相关Python代码的实现。建议先弄明白书中所讲的神经网络、反向传播等概念,再结合代码实现,会有更深的理解。
(Github开源地址:https://github.com/mnielsen/neural-networks-and-deep-learning)
百度前端研发团队的文档与源码编写风格
该项目存放了百度前端研发研发部门的代码编写规范及统一文档,主要涉及JavaScript、CSS、HTML编码规范以及Markdown编写规范等。
(Github开源地址:https://github.com/fex-team/styleguide)
《自上而下的学习路线: 软件工程师的机器学习》
该项目的作者是一名自学成才的移动端软件开发者,后又转型成为一名机器学习工程师,他在Github上公布了自己整个实践过程中的学习方法、参考资料以及知识竞赛等。内容非常全面且丰富,涉及的参考书籍就多达十几本,还有一些博客资源。如果你正在思考如何转型成为一名机器学习工程师,这个开源项目或许是最适合你的。
(中文版本:https://github.com/ZuzooVn/machine-learning-for-software-engineers/blob/master/README-zh-CN.md)
《Shell 编程范例》
本项目贡献者是一名重度的开源项目贡献者。他认为,这本书与传统Shell书籍非常不同,没有用大量的篇幅去介绍Shell语法,而是直接以面向“对象”的方式开始介绍大量Shell操作,从实践入手,涵盖了数值、逻辑值、字符串、文件、进程等方方面面。
(Github开源地址:https://github.com/tinyclub/open-shell-book)
《Docker — 从入门到实践》
Docker现在变得越来越流行,无论是开发者、运维人员还是其他信息技术人员都很有必要对Docker知识有所了解。本书更适合具备Linux基础的Docker初学者,前六章为基础内容,可以帮助初学者梳理Docker的基本概念和操作。六章之后,逐渐介绍了一些高级操作,包括高级应用场景和实操案例。这对初学者和老司机都非常有帮助,同时本书也对安全或技术实现等话题进行了说明,强烈推荐。
(Github开源地址:https://github.com/yeasy/docker_practice)
Alibaba开源的Java诊断工具
当你遇到以下类似问题而束手无策时,Arthas可以帮助你解决:
- 这个类从哪个 jar 包加载的?为什么会报各种类相关的 Exception?
- 我改的代码为什么没有执行到?难道是我没 commit?分支搞错了?
- 遇到问题无法在线上 debug,难道只能通过加日志再重新发布吗?
- 线上遇到某个用户的数据处理有问题,但线上同样无法 debug,线下无法重现!
- 是否有一个全局视角来查看系统的运行状况?
- 有什么办法可以监控到JVM的实时运行状态?
Arthas支持JDK 6+,支持Linux/Mac/Windows,采用命令行交互模式,同时提供丰富的 Tab 自动补全功能,进一步方便进行问题的定位和诊断 (Github 开源地址:https://github.com/alibaba/arthas/)
在线教程: - 基础:https://alibaba.github.io/arthas/arthas-tutorials?language=cn&id=arthas-basics - 进阶:https://alibaba.github.io/arthas/arthas-tutorials?language=cn&id=arthas-advanced 待续
只推荐我看过的,且个人觉得不错的
视频资源 点这里--->eBook/Python
电子书推荐,下面给了几个可以下载电子书的网站,都能找得到的
《Java核心编程卷一》
《深入理解Java虚拟机》周志明老师著
书籍资源
《Spark: The Definitive Guide Big Data Processing Made Simple》Spark权威指南,Spark框架开发者所写,入门必读
视频资源 点这里--->eBook/Spark系列
学习 Scala 进击大数据 Spark 生态圈:https://pan.baidu.com/s/1Ld35QE4xfsOQ9o6qFwxL0A 密码:detm
Spark 2.0从入门到精通245讲 【墙推】
以上来源于大数据学习资源群的分享
eBook/HBase系列 - 《HBase实战》 - 《HBase不睡觉》
《算法 第四版》
《SQL 基础教程》(日)
《深入浅出MySQL》
Stack Overflow搜索栏,程序猿都该去的网站(当然还有GayHub)
Coursera,没事可以听听网课
All IT eBooks - Free IT eBooks Download——电子书下载【English】
LiveBook——最新IT电子书在线阅读 【English】
在线SQL练习:https://sqlbolt.com
推荐一个国外的 Big Data 入门学习网站:Simple and Easy Learning for Big Data & Analytics(要好好学English( ⊙ o ⊙ )啊!)
```
```
Chrome Extension Downloader——可以通过此网站来下载因为某些原因无法在线安装 Chrome 插件
现在最新版chrome不支持直接离线安装插件了,但还是有办法的,见:Linux(Deepin)下解决最新版Chrome无法离线安装插件问题
离线安装谷歌插件方法: 1、打开谷歌浏览器输入:chrome://extensions/ 2、勾选开发者模式 3、把下载的后缀为crx的文件拖进来即可
插件推荐
github插件
Listen 1插件:汇集网易云、虾米、qq音乐、酷我等音乐,github上搜索
Bumps certifi from 2018.1.18 to 2022.12.7.
9e9e840
2022.12.07b81bdb2
2022.09.24939a28f
2022.09.14aca828a
2022.06.15.2de0eae1
Only use importlib.resources's new files() / Traversable API on Python ≥3.11 ...b8eb5e9
2022.06.15.147fb7ab
Fix deprecation warning on Python 3.11 (#199)b0b48e0
fixes #198 -- update link in license9d514b4
2022.06.154151e88
Add py.typed to MANIFEST.in to package in sdist (#196)Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase
.
Bumps pillow from 6.2.0 to 9.3.0.
Sourced from pillow's releases.
9.3.0
https://pillow.readthedocs.io/en/stable/releasenotes/9.3.0.html
Changes
- Initialize libtiff buffer when saving #6699 [
@radarhere
]- Limit SAMPLESPERPIXEL to avoid runtime DOS #6700 [
@wiredfool
]- Inline fname2char to fix memory leak #6329 [
@nulano
]- Fix memory leaks related to text features #6330 [
@nulano
]- Use double quotes for version check on old CPython on Windows #6695 [
@hugovk
]- GHA: replace deprecated set-output command with GITHUB_OUTPUT file #6697 [
@nulano
]- Remove backup implementation of Round for Windows platforms #6693 [
@cgohlke
]- Upload fribidi.dll to GitHub Actions #6532 [
@nulano
]- Fixed set_variation_by_name offset #6445 [
@radarhere
]- Windows build improvements #6562 [
@nulano
]- Fix malloc in _imagingft.c:font_setvaraxes #6690 [
@cgohlke
]- Only use ASCII characters in C source file #6691 [
@cgohlke
]- Release Python GIL when converting images using matrix operations #6418 [
@hmaarrfk
]- Added ExifTags enums #6630 [
@radarhere
]- Do not modify previous frame when calculating delta in PNG #6683 [
@radarhere
]- Added support for reading BMP images with RLE4 compression #6674 [
@npjg
]- Decode JPEG compressed BLP1 data in original mode #6678 [
@radarhere
]- pylint warnings #6659 [
@marksmayo
]- Added GPS TIFF tag info #6661 [
@radarhere
]- Added conversion between RGB/RGBA/RGBX and LAB #6647 [
@radarhere
]- Do not attempt normalization if mode is already normal #6644 [
@radarhere
]- Fixed seeking to an L frame in a GIF #6576 [
@radarhere
]- Consider all frames when selecting mode for PNG save_all #6610 [
@radarhere
]- Don't reassign crc on ChunkStream close #6627 [
@radarhere
]- Raise a warning if NumPy failed to raise an error during conversion #6594 [
@radarhere
]- Only read a maximum of 100 bytes at a time in IMT header #6623 [
@radarhere
]- Show all frames in ImageShow #6611 [
@radarhere
]- Allow FLI palette chunk to not be first #6626 [
@radarhere
]- If first GIF frame has transparency for RGB_ALWAYS loading strategy, use RGBA mode #6592 [
@radarhere
]- Round box position to integer when pasting embedded color #6517 [
@radarhere
]- Removed EXIF prefix when saving WebP #6582 [
@radarhere
]- Pad IM palette to 768 bytes when saving #6579 [
@radarhere
]- Added DDS BC6H reading #6449 [
@ShadelessFox
]- Added support for opening WhiteIsZero 16-bit integer TIFF images #6642 [
@JayWiz
]- Raise an error when allocating translucent color to RGB palette #6654 [
@jsbueno
]- Moved mode check outside of loops #6650 [
@radarhere
]- Added reading of TIFF child images #6569 [
@radarhere
]- Improved ImageOps palette handling #6596 [
@PososikTeam
]- Defer parsing of palette into colors #6567 [
@radarhere
]- Apply transparency to P images in ImageTk.PhotoImage #6559 [
@radarhere
]- Use rounding in ImageOps contain() and pad() #6522 [
@bibinhashley
]- Fixed GIF remapping to palette with duplicate entries #6548 [
@radarhere
]- Allow remap_palette() to return an image with less than 256 palette entries #6543 [
@radarhere
]- Corrected BMP and TGA palette size when saving #6500 [
@radarhere
]
... (truncated)
Sourced from pillow's changelog.
9.3.0 (2022-10-29)
Limit SAMPLESPERPIXEL to avoid runtime DOS #6700 [wiredfool]
Initialize libtiff buffer when saving #6699 [radarhere]
Inline fname2char to fix memory leak #6329 [nulano]
Fix memory leaks related to text features #6330 [nulano]
Use double quotes for version check on old CPython on Windows #6695 [hugovk]
Remove backup implementation of Round for Windows platforms #6693 [cgohlke]
Fixed set_variation_by_name offset #6445 [radarhere]
Fix malloc in _imagingft.c:font_setvaraxes #6690 [cgohlke]
Release Python GIL when converting images using matrix operations #6418 [hmaarrfk]
Added ExifTags enums #6630 [radarhere]
Do not modify previous frame when calculating delta in PNG #6683 [radarhere]
Added support for reading BMP images with RLE4 compression #6674 [npjg, radarhere]
Decode JPEG compressed BLP1 data in original mode #6678 [radarhere]
Added GPS TIFF tag info #6661 [radarhere]
Added conversion between RGB/RGBA/RGBX and LAB #6647 [radarhere]
Do not attempt normalization if mode is already normal #6644 [radarhere]
... (truncated)
d594f4c
Update CHANGES.rst [ci skip]909dc64
9.3.0 version bump1a51ce7
Merge pull request #6699 from hugovk/security-libtiff_buffer2444cdd
Merge pull request #6700 from hugovk/security-samples_per_pixel-sec744f455
Added release notes0846bfa
Add to release notes799a6a0
Fix linting00b25fd
Hide UserWarning in logs05b175e
Tighter test case13f2c5a
Prevent DOS with large SAMPLESPERPIXEL in Tiff IFDDependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase
.
Bumps nbconvert from 5.4.0 to 6.5.1.
Sourced from nbconvert's releases.
Release 6.5.1
No release notes provided.
6.5.0
What's Changed
- Drop dependency on testpath. by
@anntzer
in jupyter/nbconvert#1723- Adopt pre-commit by
@blink1073
in jupyter/nbconvert#1744- Add pytest settings and handle warnings by
@blink1073
in jupyter/nbconvert#1745- Apply Autoformatters by
@blink1073
in jupyter/nbconvert#1746- Add git-blame-ignore-revs by
@blink1073
in jupyter/nbconvert#1748- Update flake8 config by
@blink1073
in jupyter/nbconvert#1749- support bleach 5, add packaging and tinycss2 dependencies by
@bollwyvl
in jupyter/nbconvert#1755- [pre-commit.ci] pre-commit autoupdate by
@pre-commit-ci
in jupyter/nbconvert#1752- update cli example by
@leahecole
in jupyter/nbconvert#1753- Clean up pre-commit by
@blink1073
in jupyter/nbconvert#1757- Clean up workflows by
@blink1073
in jupyter/nbconvert#1750New Contributors
@pre-commit-ci
made their first contribution in jupyter/nbconvert#1752Full Changelog: https://github.com/jupyter/nbconvert/compare/6.4.5...6.5
6.4.3
What's Changed
- Add section to
customizing
showing how to use template inheritance by@stefanv
in jupyter/nbconvert#1719- Remove ipython genutils by
@rgs258
in jupyter/nbconvert#1727- Update changelog for 6.4.3 by
@blink1073
in jupyter/nbconvert#1728New Contributors
@stefanv
made their first contribution in jupyter/nbconvert#1719@rgs258
made their first contribution in jupyter/nbconvert#1727Full Changelog: https://github.com/jupyter/nbconvert/compare/6.4.2...6.4.3
6.4.0
What's Changed
- Optionally speed up validation by
@gwincr11
in jupyter/nbconvert#1672- Adding missing div compared to JupyterLab DOM structure by
@SylvainCorlay
in jupyter/nbconvert#1678- Allow passing extra args to code highlighter by
@yuvipanda
in jupyter/nbconvert#1683- Prevent page breaks in outputs when printing by
@SylvainCorlay
in jupyter/nbconvert#1679- Add collapsers to template by
@SylvainCorlay
in jupyter/nbconvert#1689- Fix recent pandoc latex tables by adding calc and array (#1536, #1566) by
@cgevans
in jupyter/nbconvert#1686- Add an invalid notebook error by
@gwincr11
in jupyter/nbconvert#1675- Fix typos in execute.py by
@TylerAnderson22
in jupyter/nbconvert#1692- Modernize latex greek math handling (partially fixes #1673) by
@cgevans
in jupyter/nbconvert#1687- Fix use of deprecated API and update test matrix by
@blink1073
in jupyter/nbconvert#1696- Update nbconvert_library.ipynb by
@letterphile
in jupyter/nbconvert#1695- Changelog for 6.4 by
@blink1073
in jupyter/nbconvert#1697New Contributors
... (truncated)
7471b75
Release 6.5.1c1943e0
Fix pre-commit8685e93
Fix tests0abf290
Run black and prettier418d545
Run test on 6.x branchbef65d7
Convert input to string prior to escape HTML0818628
Check input type before escapingb206470
GHSL-2021-1017, GHSL-2021-1020, GHSL-2021-1021a03cbb8
GHSL-2021-1026, GHSL-2021-102548fe71e
GHSL-2021-1024Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase
.
嘿,我在机器学习网站和教程下添加了深度学习的参考链接。我在寻找学习深度学习的资源时看到了这篇文章。在我看来,这种引用将增强本文的内容。希望我的贡献能够使其他学习者受益。
Bumps mistune from 0.8.4 to 2.0.3.
Sourced from mistune's releases.
Version 2.0.2
Fix
escape_url
via lepture/mistune#295Version 2.0.1
Fix XSS for image link syntax.
Version 2.0.0
First release of Mistune v2.
Version 2.0.0 RC1
In this release, we have a Security Fix for harmful links.
Version 2.0.0 Alpha 1
This is the first release of v2. An alpha version for users to have a preview of the new mistune.
Sourced from mistune's changelog.
Changelog
Here is the full history of mistune v2.
Version 2.0.4
Released on Jul 15, 2022
- Fix
url
plugin in<a>
tag- Fix
*
formattingVersion 2.0.3
Released on Jun 27, 2022
- Fix
table
plugin- Security fix for CVE-2022-34749
Version 2.0.2
Released on Jan 14, 2022
Fix
escape_url
Version 2.0.1
Released on Dec 30, 2021
XSS fix for image link syntax.
Version 2.0.0
Released on Dec 5, 2021
This is the first non-alpha release of mistune v2.
Version 2.0.0rc1
Released on Feb 16, 2021
Version 2.0.0a6
</tr></table>
... (truncated)
3f422f1
Version bump 2.0.3a6d4321
Fix asteris emphasis regex CVE-2022-347495638e46
Merge pull request #307 from jieter/patch-10eba471
Fix typo in guide.rst61e9337
Fix table plugin76dec68
Add documentation for renderer heading when TOC enabled799cd11
Version bump 2.0.2babb0cf
Merge pull request #295 from dairiki/bug.escape_urlfc2cd53
Make mistune.util.escape_url less aggressive3e8d352
Version bump 2.0.1Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase
.
Bumps numpy from 1.16.0 to 1.22.0.
Sourced from numpy's releases.
v1.22.0
NumPy 1.22.0 Release Notes
NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. There have been many improvements, highlights are:
- Annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
- A preliminary version of the proposed Array-API is provided. This is a step in creating a standard collection of functions that can be used across application such as CuPy and JAX.
- NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
- New methods for
quantile
,percentile
, and related functions. The new methods provide a complete set of the methods commonly found in the literature.- A new configurable allocator for use by downstream projects.
These are in addition to the ongoing work to provide SIMD support for commonly used functions, improvements to F2PY, and better documentation.
The Python versions supported in this release are 3.8-3.10, Python 3.7 has been dropped. Note that 32 bit wheels are only provided for Python 3.8 and 3.9 on Windows, all other wheels are 64 bits on account of Ubuntu, Fedora, and other Linux distributions dropping 32 bit support. All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix the occasional problems encountered by folks using truly huge arrays.
Expired deprecations
Deprecated numeric style dtype strings have been removed
Using the strings
"Bytes0"
,"Datetime64"
,"Str0"
,"Uint32"
, and"Uint64"
as a dtype will now raise aTypeError
.(gh-19539)
Expired deprecations for
loads
,ndfromtxt
, andmafromtxt
in npyio
numpy.loads
was deprecated in v1.15, with the recommendation that users usepickle.loads
instead.ndfromtxt
andmafromtxt
were both deprecated in v1.17 - users should usenumpy.genfromtxt
instead with the appropriate value for theusemask
parameter.(gh-19615)
... (truncated)
4adc87d
Merge pull request #20685 from charris/prepare-for-1.22.0-releasefd66547
REL: Prepare for the NumPy 1.22.0 release.125304b
wipc283859
Merge pull request #20682 from charris/backport-204165399c03
Merge pull request #20681 from charris/backport-20954f9c45f8
Merge pull request #20680 from charris/backport-20663794b36f
Update armccompiler.pyd93b14e
Update test_public_api.py7662c07
Update init.py311ab52
Update armccompiler.pyDependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase
.
ebook-collection notes coding java hadoop-hive spark linux bigdata