Implementation of the paper: "Learning Semantic-Specific Graph Representation for Multi-Label Image Recognition" (ICCV 2019) by Tianshui Chen, Muxin Xu, Xiaolu Hui, Hefeng Wu, Liang Lin.
Python 2.7 Pytorch 0.4.1 Ubuntu 14.04 LTS
Microsoft COCO - 80 common object categories
Pascal VOC 2007 - 20 common object categories
Pascal VOC 2012 - 20 common object categories
VisualGenome - subset of VG, covering 500 most common object categories
You can download the data files and our best models here password: ep6u
git clone https://github.com/Mu-xsan/SSGRL.git
cd SSGRL
mkdir data (download the data needed and put here)
bash main_coco.sh [GPU_id] [Remark for this experiment]
bash main_voc07.sh [GPU_id] [Remark for this experiment]
bash main_voc12.sh [GPU_id] [Remark for this experiment]
bash main_vg.sh [GPU_id] [Remark for this experiment]
Microsoft COCO:
|Method| mAP| CP|CR|CF1|OP|OR|OF1| |---------|-------|-------|---------|-------|-------|---------|-------| SSGRL|83.8|89.9|68.5|76.8|91.3|70.8|79.7|
Pascal VOC 2007:
| Classes | AP(SSGRL)| AP(pre) | |-------------|--------|--------| |aeroplane|99.5|99.7| |bicycle|97.1|98.4| |bird|97.6|98.0| |boat|97.8|97.6| |bottle|82.6|85.7| |bus|94.8|96.2| |car|96.7|98.2| |cat|98.1|98.8| |chair|78.0|82.0| |cow|97.0|98.1| |diningtable|85.6|89.7| |dog|97.8|98.8 |horse|98.3|98.7| |motorbike|96.4|97.0| |person|98.8|99.0| |pottedplant|84.9|86.9| |sheep|96.5|98.1| |sofa|79.8|85.8| |train|98.4|99.0| |tvmonitor|92.8|93.7| | mAP | 93.4|95.0|
Pascal VOC 2012:
| Classes | AP(SSGRL)| AP(pre) | |-------------|--------|--------| |aeroplane|99.5|99.7| |bicycle|95.1|96.1| |bird|97.4|97.7| |boat|96.4|96.5| |bottle|85.8|86.9| |bus|94.5|95.8| |car|93.7|95.0| |cat|98.9|98.9| |chair|86.7|88.3| |cow|96.3|97.6| |diningtable|84.6|87.4| |dog|98.9| 99.1| |horse|98.6|99.2| |motorbike|96.2|97.3| |person|98.7|99.0| |pottedplant|82.2|84.8| |sheep|98.2|98.3| |sofa|84.2|85.8| |train|98.1|99.2| |tvmonitor|93.5|94.1| | mAP | 93.9|94.8|
VisualGenome-500
| Method | mAP| |-------------|--------| |SSGRL|36.6|
@inproceedings{chen2019learning,
title={Learning semantic-specific graph representation for multi-label image recognition},
author={Chen, Tianshui and Xu, Muxin and Hui, Xiaolu and Wu, Hefeng and Lin, Liang},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={522--531},
year={2019}
}
@article{chen2020knowledge,
title={Knowledge-guided multi-label few-shot learning for general image recognition},
author={Chen, Tianshui and Lin, Liang and Hui, Xiaolu and Chen, Riquan and Wu, Hefeng},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
year={2022},
publisher={IEEE}
}
For any questions, feel free to open an issue or contact us ([email protected] & [email protected] & [email protected])
I was wondering how to extract semantic feature maps corresponding to categories shown in Figure 4. in your paper,Can you provide code?
when calculating rv using fc_eq4_w and fc_eq3_u, i think we should use fc_eq4_w and fc_eq4_u
The downloaded file does not contain resnet101.pth.tar. The best model provided by the authors also does not have an resnet101.pth.tar. But I can't do follow-up training without resnet101.pth.tar. Best regards!
Hi, Thanks for sharing your codes.
I was wondering how to extract semantic feature maps corresponding to categories shown in Figure 4. in your paper
Could you let me know where to look for the semantic feature maps? Thank you
Hello, where can download the VOC2012 test dataset? Any help will be appreciated.