DropBlock implemented in Keras
CyberZHG, updated
🕥
2022-01-22 11:52:39
Keras DropBlock
Implementation of DropBlock
Install
bash
pip install keras-drop-block
Usage
See fashion mnist demo.
Issues
opened on 2021-06-20 10:03:30 by SOUMEE2000
18 utils = keras.utils
19 activations = keras.activations
---> 20 applications = keras.applications
21 backend = keras.backend
22 datasets = keras.datasets
AttributeError: module 'keras' has no attribute 'applications'
Could anyone please help out a bit?
opened on 2020-03-03 11:23:14 by ma7555
Running the mnist.py demo, receive the following error
```
Traceback (most recent call last):
File "C:\Users\ma7555\Anaconda3\lib\site-packages\tensorflow\python\ops\array_ops.py", line 2953, in ones
tensor_shape.TensorShape(shape))
File "C:\Users\ma7555\Anaconda3\lib\site-packages\tensorflow\python\framework\tensor_shape.py", line 771, in init
self._dims = [as_dimension(d) for d in dims_iter]
File "C:\Users\ma7555\Anaconda3\lib\site-packages\tensorflow\python\framework\tensor_shape.py", line 771, in
self._dims = [as_dimension(d) for d in dims_iter]
File "C:\Users\ma7555\Anaconda3\lib\site-packages\tensorflow\python\framework\tensor_shape.py", line 716, in as_dimension
return Dimension(value)
File "C:\Users\ma7555\Anaconda3\lib\site-packages\tensorflow\python\framework\tensor_shape.py", line 200, in init
None)
File "", line 3, in raise_from
TypeError: Dimension value must be integer or None or have an index method, got
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "C:\Users\ma7555\Anaconda3\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 6328, in pack
values, "axis", axis)
tensorflow.python.eager.core._FallbackException: This function does not handle the case of the path where all inputs are not already EagerTensors.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "c:/Users/ma7555/Documents/Kaggle/bengaliai-cv19/mnist.py", line 75, in
drop_block_model = get_drop_block_model()
File "c:/Users/ma7555/Documents/Kaggle/bengaliai-cv19/mnist.py", line 56, in get_drop_block_model
model.add(DropBlock2D(input_shape=(28, 28, 1), block_size=7, keep_prob=0.8, name='Input-Dropout'))
File "C:\Users\ma7555\Anaconda3\lib\site-packages\keras\engine\sequential.py", line 166, in add
layer(x)
File "C:\Users\ma7555\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py", line 75, in symbolic_fn_wrapper
return func(args, kwargs)
File "C:\Users\ma7555\Anaconda3\lib\site-packages\keras\engine\base_layer.py", line 489, in call
output = self.call(inputs, kwargs)
File "C:\Users\ma7555\Anaconda3\lib\site-packages\keras_drop_block\drop_block.py", line 200, in call
return K.in_train_phase(dropped_inputs, inputs, training=training)
File "C:\Users\ma7555\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py", line 75, in symbolic_fn_wrapper
return func(args, kwargs)
File "C:\Users\ma7555\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py", line 3214, in in_train_phase
x = switch(training, x, alt)
File "C:\Users\ma7555\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py", line 75, in symbolic_fn_wrapper
return func(*args, kwargs)
File "C:\Users\ma7555\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py", line 3147, in switch
else_expression_fn)
File "C:\Users\ma7555\Anaconda3\lib\site-packages\tensorflow\python\ops\control_flow_ops.py", line 1392, in cond_for_tf_v2
return cond(pred, true_fn=true_fn, false_fn=false_fn, strict=True, name=name)
File "C:\Users\ma7555\Anaconda3\lib\site-packages\tensorflow\python\util\deprecation.py", line 507, in new_func
return func(args, kwargs)
File "C:\Users\ma7555\Anaconda3\lib\site-packages\tensorflow\python\ops\control_flow_ops.py", line 1177, in cond
return cond_v2.cond_v2(pred, true_fn, false_fn, name)
File "C:\Users\ma7555\Anaconda3\lib\site-packages\tensorflow\python\ops\cond_v2.py", line 83, in cond_v2
op_return_value=pred)
File "C:\Users\ma7555\Anaconda3\lib\site-packages\tensorflow\python\framework\func_graph.py", line 981, in func_graph_from_py_func
func_outputs = python_func(func_args, *func_kwargs)
File "C:\Users\ma7555\Anaconda3\lib\site-packages\keras_drop_block\drop_block.py", line 193, in dropped_inputs
mask = self._compute_drop_mask(shape)
File "C:\Users\ma7555\Anaconda3\lib\site-packages\keras_drop_block\drop_block.py", line 174, in _compute_drop_mask
mask = self._compute_valid_seed_region(height, width)
File "C:\Users\ma7555\Anaconda3\lib\site-packages\keras_drop_block\drop_block.py", line 166, in _compute_valid_seed_region
K.ones((height, width)),
File "C:\Users\ma7555\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py", line 996, in ones
v = tf.ones(shape=shape, dtype=dtype, name=name)
File "C:\Users\ma7555\Anaconda3\lib\site-packages\tensorflow\python\ops\array_ops.py", line 2956, in ones
shape = ops.convert_to_tensor(shape, dtype=dtypes.int32)
File "C:\Users\ma7555\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1341, in convert_to_tensor
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
File "C:\Users\ma7555\Anaconda3\lib\site-packages\tensorflow\python\ops\array_ops.py", line 1449, in _autopacking_conversion_function
return _autopacking_helper(v, dtype, name or "packed")
File "C:\Users\ma7555\Anaconda3\lib\site-packages\tensorflow\python\ops\array_ops.py", line 1355, in _autopacking_helper
return gen_array_ops.pack(list_or_tuple, name=name)
File "C:\Users\ma7555\Anaconda3\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 6333, in pack
values, axis=axis, name=name, ctx=_ctx)
File "C:\Users\ma7555\Anaconda3\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 6375, in pack_eager_fallback
ctx=ctx, name=name)
File "C:\Users\ma7555\Anaconda3\lib\site-packages\tensorflow\python\eager\execute.py", line 75, in quick_execute
raise e
File "C:\Users\ma7555\Anaconda3\lib\site-packages\tensorflow\python\eager\execute.py", line 60, in quick_execute
inputs, attrs, num_outputs)
TypeError: An op outside of the function building code is being passed
a "Graph" tensor. It is possible to have Graph tensors
leak out of the function building context by including a
tf.init_scope in your function building code.
For example, the following function will fail:
@tf.function
def has_init_scope():
my_constant = tf.constant(1.)
with tf.init_scope():
added = my_constant * 2
The graph tensor has name: strided_slice:0
```